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Abstract 

In this work, a three-parameter extension of the Inverted Weibull distribution, called the half-

logistic Exponentiated Inverted Weibull distribution, is proposed. This distribution has sub-

models, including the Exponentiated Inverted Weibull and Inverted Weibull distributions. The 

proposed model is quite flexible and adaptable to model any kind of life-time data. Standard 

statistical properties, such as ordinary and incomplete moments, quantile function, moment 

generating function, reliability function, Renyi, and 𝜹-entropy are obtained. The maximum 

likelihood method is used to obtain the estimate of the model parameters. An application of the 

developed model to pig data illustrates its flexibility for lifetime data modeling. 

 

Keywords: Maximum likelihood estimation, incomplete moments, 𝛿-entropy, half-logistic 

Exponentiated Inverted Weibull distribution. 

 

1.0 Introduction 

The inverted Weibull distribution is a popular probability distribution used in the analysis of life 

time data exhibiting monotone failure rates. Khan et al. (2008) studied the flexibility and 

tractability of the three parameters inverted Weibull (IW) distribution. Flair et al. (2012) 

investigated the properties of the Exponentiated inverted Weibull (EIW) distribution and its 

application to failure data. Mudholka (1995) developed the exponentiated Weibull distribution and 

applied the new distribution to model the bus-motor failure time data. Mudholkar and Hutson 

(1995) reviewed the exponentiated Weibull distribution with new measures. The Weibull inverted 

Weibull distribution was studied by Ogunde et al. (2018), modified extended Weibull distribution 

by Ogunde et al. (2022). We say that the random variable X has a standard EIW if its cumulative 

distribution function (CDF) is of the form: 

𝐺(𝑥; 𝛼, 𝜃) = 1 − (𝑒−𝑥−𝜃
)

𝛼

,                                                          (1) 

And the corresponding density function (PDF) is given by  

𝑔(𝑥; 𝛼, 𝜃) = 𝛼𝑥−𝜃−1 (𝑒−𝑥−𝜃
)

𝛼

,                                                          (2) 

 

Where 𝛼 and 𝜃are positive shape parameters. 
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1.1 Motivation of study 

The main purpose of the modification and extension forms of the Inverted Weibull distribution 

is to describe and fit the data sets with non-monotonic hazard rate, such as the bathtub, unimodal 

and modified unimodal hazard rate. Many modifications of the Inverted Weibull distribution have 

achieved the above purpose. On the other hand, unfortunately, the number of parameters has 

increased, the forms of the survival and hazard functions have been complicated and estimation 

problems have risen. This work presents a more flexible representation of the extended Inverted 

Weibull distribution which can be used to model data exhibiting various shapes of the hazard 

function. 

 

2.0 Half Logistic Exponentiated Inverted Weibull distribution 

Based on the work of Cordeiro et al. (2016), the 𝐶𝐷𝐹 of half-logistic generalized family is 

defined by: 

𝐹(𝑥; 𝜌, 𝒩) =
1 − [1 − 𝐺(𝑥; 𝒩)]𝜌

1 + [1 − 𝐺(𝑥; 𝒩)]𝜌
,     𝑥 ∈ 𝑅                                                                (3) 

where ρ is a positive shape parameter and 𝐹(𝑥; £) represents a CDF of a continuous distribution. 

Here, 𝒩 represents a vector of parameter(s) related to the corresponding standard probability or 

baseline distribution. The chief motivations behind the half-logistic family of distributions are as 

follows. Cordeiro et al. (2016) demonstrated that the effect of the power transformation can enrich 

the baseline distribution, improving the flexibility provides a positive impact on the analyses of 

lifetime data sets. The normal, Fréchet, Weibull, and inverse Lomax distributions have been used 

as baseline in the previous work using the half-logistic generated family by Cordeiro et al. (2016). 

In recent studies, Ogunde et al. (2017) developed and studied the type 1 half logistic Gompertz 

distribution, Anwar and Bibi (2018) studied the Half-Logistic Generalized Weibull Distribution, 

type I half-logistic Topp-Leone distribution was proposed and studied by Zein-Eldin et al. (2019). 

Type I half logistic power Lomax and half logistics generalized Rayleigh were respectively studied 

by distribution was developed and studied by Fayomi (2019) and Ogunde et al. (2024). However, 

the half logistic-g family has not been completely explored and, based on the studies carried out 

in the past, more work needs to be done to fully explore the richness of this generated family of 

distribution. In this paper, we consider the baseline distribution as Inverted Weibull (𝐼𝑊) 

distribution.  

Thus, we introduce a new flexible lifetime distribution with three parameters called the half-

logistic Exponentiated Inverted Weibull (𝐻𝐿𝐸𝐼𝑊) distribution. The 𝐶𝐷𝐹 of the 𝐻𝐿𝐸𝐼𝑊 

distribution with parameter vector 𝜁 = (𝜂, 𝜑, 𝜌) is obtained by inserting (1) into (2) as 

𝐹(𝑥; 𝛼, 𝜃, 𝜌) =
1 − [1 − (𝑒−𝑥−𝜃

)
𝛼

]
𝜌

1 + [1 − (𝑒−𝑥−𝜃
)

𝛼
]

𝜌 ,     𝑥 ∈ 𝑅                                                                (4) 

The associated PDF to (4) is given by  
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𝑓(𝑥; 𝛼, 𝜃, 𝜌) =
2𝛼𝜃𝜌𝑥−𝜃−1 (𝑒−𝑥−𝜃

)
𝛼

[1 − (𝑒−𝑥−𝜃
)

𝛼

]
𝜌−1

(1 + [1 − (𝑒−𝑥−𝜃
)

𝛼
]

𝜌

)
2 .     𝑥 ∈ 𝑅                 (5) 

 

Where 𝛼, 𝜃 and 𝜌 are positive shape parameters. The survival (𝑆(𝑥)), hazard (ℎ(𝑥)),and the 

cumulative hazard (𝐻(𝑥)) are, respectively, given as 

𝑆(𝑥; 𝛼, 𝜃, 𝜌) = 1 − 𝐹(𝑥; 𝛼, 𝜃, 𝜌) =
2 [1 − (𝑒−𝑥−𝜃

)
𝛼

]
𝜌

1 + [1 − (𝑒−𝑥−𝜃
)

𝛼
]

𝜌 ,                      𝑥 ∈ 𝑅                  (6) 

 and 𝑆(𝑥; 𝛼, 𝜃, 𝜌) = 1 for 𝑥 ≤ 0, 

ℎ(𝑥; 𝜁) =
𝑔(𝑥; 𝜁)

𝑆(𝑥; 𝜁)
=

2𝛼𝜃𝜌𝑥−𝜃−1𝑒−𝑥−𝜃
(𝑒−𝑥−𝜃

)
𝛼−1

(1 + [1 − (𝑒−𝑥−𝜃
)

𝛼
]

𝜌

) (1 − (𝑒−𝑥−𝜃
)

𝛼
)

,                          (7) 

and ℎ(𝑥; 𝜁) = 0 for 𝑥 ≤ 0, and 

     𝐻(𝑥) = −𝑙𝑜𝑔[𝑆(𝑥; 𝜁)] 

= − log(2) − 𝜌𝑙𝑜𝑔 [1 − (𝑒−𝑥−𝜃
)

𝛼

)] + 𝑙𝑜𝑔 (1 + [1 − (𝑒−𝑥−𝜃
)

𝛼

]
𝜌

).         (8) 

and 𝐻(𝑥; 𝜁) = 0 for 𝑥 ≤ 0. The graph of distribution, density, survival function(sf) and hazard 

function (hf) are respectively, given in Figures 1and 2 for various hypothetical values of the 

parameters of the distributions. 
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Figure 1.0. Graph of the density function of the 𝐻𝐿𝐸𝐼𝑊 distribution 

 

 

Figure 2.0. Graph of the hazard function of the 𝐻𝐿𝐸𝐼𝑊 distribution 

• It could be observed from Figure 2.0 that the failure rate function of the 𝐻𝐿𝐸𝐼𝑊 

model exhibits the form of inverted bathtub-shaped failure rate.  
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3.0   Important representation  

In this subsection, an important tool for the expansion of the PDF and CDF for HLEIW is provided. 

From the generalized binomial series given by  

(1 + 𝑚)−𝑎 = ∑(−1)𝑖 (
𝑎 + 𝑖 − 1

𝑖
) 𝑚𝑖

∞

𝑖=0

                                                            (9) 

For |𝑚| < 1 and 𝑎 is a positive real non-integer. Then, by applying the binomial theorem (8) in 

(5), the density function of 𝐻𝐿𝐸𝐼𝑊 distribution becomes  

𝑓(𝑥; 𝛼, 𝜃, 𝜌) = 2𝛼𝜃𝜌 ∑ (−1)𝑖+𝑗 (
𝑖 + 1

𝑖
) (

𝜌(𝑖 + 1) − 1

𝑗
) 𝑥−𝜃−1𝑒−(1+𝑗)𝛼𝑥−𝜃

∞

𝑖,𝑗=0

    (10) 

3.1 Statistical characteristics of 𝑯𝑳𝑬𝑰𝑾 distribution 

3.1.1 The quantiles, median and the upper quartile 

An expression for the quantile and the median of 𝐻𝐿𝐸𝐼𝑊 are obtained in this subsection. 

The quantile 𝑥𝑞 of the 𝐻𝐿𝐸𝐼𝑊 is represented as follows 

𝑥𝑞 = (−𝑙𝑛 [1 − (1 − (
1 − 𝑞

1 + 𝑞
)

1
𝜌⁄

)

1
𝛼⁄

])

−1
𝜃⁄

                                                      (11) 

The median and the upper quartile of 𝐻𝐿𝐸𝐼𝑊 are found by putting 𝑞 = 0.5 and 0.75 in (11), 

respectively, as follows: 

𝑥0.5 = (−𝑙𝑛 [1 − (1 − (
0.5

1.5
)

1
𝜌⁄

)

1
𝛼⁄

])

−1
𝜃⁄

                                                      (12) 

and 

𝑥0.75 = (−𝑙𝑛 [1 − (1 − (
0.25

1.75
)

1
𝜌⁄

)

1
𝛼⁄

])

1
𝜃⁄

                                                      (13) 

 

 

3.2. The 𝒗𝒕𝒉 moment 

If 𝑋~𝐻𝐿𝐸𝐼𝑊(𝜁), then the 𝒗𝒕𝒉 moment of X can be obtained using  
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𝜇𝑣
′ = 𝐸(𝑋𝑣) = ∫ 𝑥𝑣𝑓(𝑥)𝑑𝑥.

∞

0

                                                                                       (14) 

By substituting from (10) in (14), we get the 𝒗𝒕𝒉 moment as follows 

𝜇𝑣
′ = 𝛼𝜌 ∑ (−1)𝑖+𝑗 (

𝑖 + 1

𝑖
) (

𝜌(𝑖 + 1) − 1

𝑗
) 𝛼(𝑣

𝜃⁄ −1)(𝑗 + 1)−(𝑣
𝜃⁄ −1)𝛤 (1 −

𝑣

𝜃
)

∞

𝑖,𝑗=0

.            (15) 

By setting v = 1 in (15), we obtain the mean of X. Measures of skewness and kurtosis can also be 

calculated from the ordinary moments of X using the cumulants measure. The cumulant (𝜅𝑛) of X 

can be obtained as follows 

(𝜅𝑛) = 𝜇𝑛
′ − ∑ (

𝑛 − 1

𝑣 − 1
) 𝜅𝑣(𝜇𝑛−𝑣

′ ),    

𝑛−1

𝑣=0

                                       (16) 

Where, 

𝜅1 = 𝜇1
′ ,     𝜅1 = 𝜇2

′ − (𝜇2
′ )2,    𝜅3 = 𝜇3

′ − 3𝜇2
′ 𝜇1

′ + (𝜇1
′ )3 

And 

𝜅4 = 𝜇4
′ − 4𝜇3

′ 𝜇1
′ − 3(𝜇2

′ )2 + 12𝜇2
′ (𝜇1

′ )2 − 6(𝜇1
′ )4 

Consequently, an expression for the skewness and the kurtosis can be calculated as follows 𝜅𝑠 =
𝜅3

(√𝜅2)3⁄  and 𝜅𝑢 =
𝜅4

(𝜅2)2⁄  respectively.  

 

3.3   Incomplete moment of 𝑯𝑳𝑬𝑰𝑾 distribution 

If 𝑋~𝐻𝐿𝐸𝐼𝑊(𝜁), then the 𝒗𝒕𝒉  incomplete moment of X can be obtained using  

△(𝑣)= 𝐸(𝑋𝑣) = ∫ 𝑥𝑣𝑓(𝑥)𝑑𝑥.

𝑡

0

                                                                                       (17) 

By substituting from (10) in (17), we get the 𝒗𝒕𝒉 incomplete moment as follows 

△(𝑣)= 𝛼𝜌 ∑ (−1)𝑖+𝑗 (
𝑖 + 1

𝑖
) (

𝜌(𝑖 + 1) − 1

𝑗
) 𝛼(𝑣

𝜃⁄ −1)(𝑗 + 1)−(𝑣
𝜃⁄ −1)𝛤 (1

∞

𝑖,𝑗=0

−
𝑣

𝜃
, 𝛼(1 + 𝑗)𝑡−𝜃)                                                                                                      (18) 
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3.4. Moment generating function (mgf) 

The mgf of 𝐻𝐿𝐸𝐼𝑊(𝜁), say 𝑀𝑋(𝑡) is found using 

𝑀𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = ∫ 𝑒𝑡𝑋𝑓(𝑥)𝑑𝑥 = ∑
𝑡𝑣

𝑣!

∞

𝑣=0

∞

0

𝜇(𝑣)                                                             (19) 

Substituting (15) into (19), we obtain 

𝑀𝑋(𝑡) = 𝛼𝜌 ∑
𝑡𝑣

𝑣!
(−1)𝑖+𝑗 (

𝑖 + 1

𝑖
) (

𝜌(𝑖 + 1) − 1

𝑗
) 𝛼(𝑣

𝜃⁄ −1)(𝑗 + 1)−(𝑣
𝜃⁄ −1)𝛤 (1 −

𝑣

𝜃
)

∞

𝑖,𝑗,𝑣=0

    (20) 

 

3.5   Entropy Function and 𝜹 −Entropy 

The entropy function can be used to determine the level uncertainty related to X whose PDF 

𝑔(𝑥). It plays a fundamental role in computer science, engineering, and others. The Renyi entropy 

of X, say 𝐼𝜑(𝑋), is determined by 

𝐼𝜑 =
1

1 − 𝜑
𝑙𝑜𝑔 ∫ 𝑔𝜑(𝑥)𝑑𝑥

∞

−∞

                                                                                                    (21) 

If X ~ 𝐻𝐿𝐸𝐼𝑊(𝜁), then  𝐼𝜑(𝑋) is obtained by 

𝐼𝜑 =
1

1 − 𝜑
𝑙𝑜𝑔 (2𝜑𝛼𝜑𝜃𝜑−1𝜌𝜑(𝛼𝑗 + 𝜑)1−

(𝜃+1)𝜑
𝜃

⁄ 𝑀∗𝛤 (
(𝜃 + 1)(𝜑 − 1

𝜃
+ 1))            (22) 

where 

𝑀∗ = ∑ (−1)𝑖+𝑗 (
2𝜑 + 𝑖 − 1

𝑖
) (

(𝜌 − 𝑖)𝜑 + 𝜌𝑖

𝑗
)

∞

𝑖,𝑗=0

 

Consequently, the 𝛿-entropy of 𝑋, say 𝑍𝜑(𝑋) is given by 

𝑍𝛿(𝑋) =
1

1 − 𝜑
𝑙𝑜𝑔[1 − (1 − 𝜑)𝐼𝜑(𝑋)]                                                       (23) 

 

4.0   Maximum Likelihood Estimation (MLE) 

Suppose  𝑥1, 𝑥2, … , 𝑥𝑛 are the observed sample values obtained from the 𝐻𝐿𝐸𝐼𝑊 distribution. 

The log-likelihood (𝑙) function is defined as follows: 
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𝑙(𝛼, 𝜃, 𝜌) = 𝑛𝑙𝑜𝑔(𝛼) + 𝑛𝑙𝑜𝑔(𝜃) + 𝑛𝑙𝑜𝑔(𝜌) − (𝜃 + 1) ∑ 𝑙𝑜𝑔(𝑥𝑖)

∞

𝑖=1

− 𝛼 ∑ 𝑥𝑖
−𝜃

∞

𝑖=1

 

+(𝜌 − 1) ∑ 𝑙𝑜𝑔 [1 − (𝑒−𝑥𝑖
−𝜃

)
𝛼

]

𝑛

𝑖=1

− 2 ∑ 𝑙𝑜𝑔 (1 + [1 − (𝑒−𝑥−𝜃
)

𝛼

]
𝜌

)

𝑛

𝑖=1

                            (24) 

Maximizing 𝑙(𝛼, 𝜃, 𝜌) with respect to 𝜂, 𝜑, and 𝜌, we obtain the following system of nonlinear 

equations: 

𝑛

𝛼
+ ∑ 𝑥𝑖

−𝜃

∞

𝑖=1

+ ∑ (
𝛼𝑥𝑖

−𝜃−1𝑃𝑖
𝑥

(1 − 𝑃𝑖
𝑥)

)

𝑛

𝑖=1

− 2𝜌 ∑ (
𝛼𝑥−𝜃[1 − 𝑣]𝜌 (𝑒−𝑥−𝜃

)
𝛼

(1 + [1 − 𝑃𝑖
𝑥]𝜌)[1 − 𝑃𝑖

𝑥]
) = 0

𝑛

𝑖=1

 

𝑛

𝜃
− ∑ 𝑙𝑜𝑔(𝑥𝑖)

∞

𝑖=1

+ 𝛼 ∑ (
𝜃𝑥−𝜃𝑙𝑜𝑔𝑥

(𝑥)
) +

𝑛

𝑖=1

(𝜌 − 1)𝛼𝜃 ∑ (
𝑥−𝜃𝑃𝑖

𝑥𝑙𝑜𝑔𝑥

𝑥(1 + [1 − 𝑃𝑖
𝑥]𝜌)

)

𝑛

𝑖=1

 

                                                              +2𝜌𝜃 ∑ (
𝜃𝑥−𝜃𝑙𝑜𝑔𝑥

(1 + [1 − 𝑃𝑖
𝑥])[1 − 𝑃𝑖

𝑥]
) = 0

𝑛

𝑖=1

 

                                    
𝑛

𝜌
− ∑ 𝑙𝑜𝑔[𝑃𝑖

𝑥] − 2

∞

𝑖=1

∑ (
([1 − 𝑃𝑖

𝑥]𝜌)𝑙𝑜𝑔[1 − 𝑃𝑖
𝑥]

(1 + [1 − 𝑃𝑖
𝑥]𝜌)

) = 0

𝑛

𝑖=1

 

Where, 𝑃𝑖
𝑥 = (𝑒−𝑥−𝜃

)
𝛼

 

 

5.0 Applications 

In this section, we compare the fit of the HLEIW model and some other competing models using 

one pig data set as reported by Bjerkedal (1960). We measure how well the HLEIW distribution 

performs compared to the half logistic Inverted Weibull (HLIW), Exponentiated Inverted Weibull 

(EIW), and Inverted Weibull (IW) distribution. For each model, we obtained the estimate of the 

parameters by using the maximum likelihood method and assessed the goodness-of-fit by using 

the following information criteria: Akaike information criterion (AIC), Consistent Akaike 

information criterion (CAIC), Hannan Quinin information criterion (HQIC), and Kolmogorov 

Smirnov (KS statistic. In general, the smaller the value of the information criteria, the better the 

model fit to the data.  

The data used represent the survival times (in days) of 72 guinea pigs. The real data set represents 

the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli reported by 

Bjerkedal (1960). They are the Regiment 4.3, Study M.: 10, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 

100, 100, 102, 105, 107, 107, 108, 108, 108, 109, 112, 113, 115, 116, 120, 121, 122, 122, 124, 130, 

134, 136, 139, 144, 146, 153, 159, 160, 163, 163, 168, 171, 172, 176, 183, 195, 196, 197, 202, 

213, 215, 216, 222, 230,231, 240, 245, 251, 253, 254, 255, 278, 293, 327, 342, 347, 361, 402, 432, 
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458, 555. The exploratory data analysis for the pig data set is given in Table 1, which shows that 

the data is over-dispersed, positively skewed and Leptokurtic with excess kurtosis of 1.9885. 

Figure 3.0 clearly indicates that the [pig data exhibits an increasing failure rate and skewed to the 

right. 

The ML estimates (standard errors -SEs- in parentheses and confidence interval (CI) in curly 

brackets) as well as the AIC, CAIC, and KS statistics are given in Table 3. All four goodness-of-

fit statistics shows that the 𝐻𝐿𝐸𝐼𝑊 model gives the best fit.  

 

Table 1. Summary Statistic of the pig data 

Range Lower 

quartile 

Median Upper 

quartile 

Mean Variance Skewness  Kurtosis 

545 108 149.5 224.0 176.8 10705.1 1.341 4.988 
 

 

 

                    Figure 3.0 Total Time on Test (TTT) plot and Violin Plot for the pig data 
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Table 2.0 model fits for the pig data 

𝑀𝑜𝑑𝑒𝑙 𝛼 𝜃 𝜌 −𝑙 𝐴𝐼𝐶 𝐶𝐴𝐼𝐶 𝐾𝑆 
𝐻𝐿𝐸𝐼𝑊 19.821 

(3.194) 

0.435 

(0.042) 

10.8907 

(3.3157) 

436.553 879.105 879.458 0.2288 

𝐻𝐿𝐼𝑊 - 5.2897 0.0579 0.0112 1073.017 1073.19 0.5071 

𝐸𝐼𝑊 24.1408 0.7146 -- 467.821 939.642 939.816 0.2741 

𝐼𝑊 - 0.2692 

(0.0262) 

- 570.802 1143.603 1143.661 0.6713 

 

From Table 2.0, it could be observed that the HLEIW model has the smallest AIC, CAIC, and 

KS statistics which is an indication that is the best model among all other models consider in this 

study for the modeling of pig’s data. 

 

6.0 Conclusion 

A new three-parameter distribution called the 𝐻𝐿𝐸𝐼𝑊 distribution is developed. The characteristic 

of the 𝐻𝐿𝐸𝐼𝑊 distribution is that its failure rate function can be decreasing, increasing, bathtub-

shaped and unimodal depending on its parameter values. Several statistical properties of the new 

distribution such as its probability density function, its cumulative density function, quantiles, 

moments, incomplete moments, moments generating functions, Renyi and ρ-entropies are derived. 

Fitting the 𝐻𝐿𝐸𝐼𝑊 model to a pig data set demonstrate the flexibility and usefulness of the 

proposed distribution  because it provides a good fit when compared with other competing models 

considered in this study.  
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